High-Order Compact Implicit Difference Methods For Parabolic Equations in Geodynamo Simulation

نویسندگان

  • Don Liu
  • Weijia Kuang
  • Andrew Tangborn
چکیده

A series of compact implicit schemes of fourth and sixth orders are developed for solving differential equations involved in geodynamics simulations. Three illustrative examples are described to demonstrate that high-order convergence rates are achieved while good efficiency in terms of fewer grid points is maintained. This study shows that high-order compact implicit difference methods provide high flexibility and good convergence in solving some special differential equations on nonuniform grids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Order Compact Finite Difference Schemes for Solving Bratu-Type Equations

In the present study, high order compact finite difference methods is used to solve one-dimensional Bratu-type equations numerically. The convergence analysis of the methods is discussed and it is shown that the theoretical order of the method is consistent with its numerical rate of convergence. The maximum absolute errors in the solution at grid points are calculated and it is shown that the ...

متن کامل

A High Order Finite Dierence Method for Random Parabolic Partial Dierential Equations

In this paper, for the numerical approximation of random partial differential equations (RPDEs) of parabolic type, an explicit higher order finite difference scheme is constructed. In continuation the main properties of deterministic difference schemes, i.e. consistency, stability and convergency are developed for the random cases. It is shown that the proposed random difference scheme has thes...

متن کامل

Fully implicit, linearly implicit and implicit-explicit backward difference formulae for quasi-linear parabolic equations

Quasi-linear parabolic equations are discretised in time by fully implicit backward difference formulae (BDF) as well as by implicit–explicit and linearly implicit BDF methods up to order 5. Under appropriate stability conditions for the various methods considered, we establish optimal order a priori error bounds by energy estimates, which become applicable via the Nevanlinna-Odeh multiplier te...

متن کامل

Stability of Implicit-Explicit Backward Difference Formulas For Nonlinear Parabolic Equations

We analyze stability properties of BDF methods of order up to 5 for linear parabolic equations as well as of implicit–explicit BDF methods for nonlinear parabolic equations by energy techniques; time dependent norms play also a key role in the analysis.

متن کامل

A case study of flood dynamic wave simulation in natural waterways using numerical solution of unsteady flows

Flood routing has many applications in engineering projects and helps designers in understanding the flood flow characteristics in river flows. Floods are taken unsteady flows that vary by time and location. Equations governing unsteady flows in waterways are continuity and momentum equations which in case of one-dimensional flow the Saint-Venant hypothesis is considered. Dynamic wave model as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009